Components

Atmospheric sciences focuses on the Earth's atmosphere, with an emphasis upon its interrelation to other systems. Atmospheric sciences can include studies of meteorology, greenhouse gas phenomena, atmospheric dispersion modeling of airborne contaminants,[4][5] sound propagation phenomena related to noise pollution, and even light pollution. Taking the example of the global warming phenomena, physicists create computer models of atmospheric circulation and infra-red radiation transmission, chemists examine the inventory of atmospheric chemicals and their reactions, biologists analyze the plant and animal contributions to carbon dioxide fluxes, and specialists such as meteorologists and oceanographers add additional breadth in understanding the atmospheric dynamics. Biodiversity of a coral reef. Corals adapt and modify their environment by forming calcium carbonate skeletons. This provides growing conditions for future generations and forms a habitat for many other species. Ecology is the study of the interactions between organisms and their environment. Ecologists might investigate the relationship between a population of organisms and some physical characteristic of their environment, such as concentration of a chemical; or they might investigate the interaction between two populations of different organisms through some symbiotic or competitive relationship. For example, an interdisciplinary analysis of an ecological system which is being impacted by one or more stressors might include several related environmental science fields. In an estuarine setting where a proposed industrial development could impact certain species by water and air pollution, biologists would describe the flora and fauna, c

emists would analyze the transport of water pollutants to the marsh, physicists would calculate air pollution emissions and geologists would assist in understanding the marsh soils and bay muds. Environmental chemistry is the study of chemical alterations in the environment. Principal areas of study include soil contamination and water pollution. The topics of analysis include chemical degradation in the environment, multi-phase transport of chemicals (for example, evaporation of a solvent containing lake to yield solvent as an air pollutant), and chemical effects upon biota. As an example study, consider the case of a leaking solvent tank which has entered the habitat soil of an endangered species of amphibian. As a method to resolve or understand the extent of soil contamination and subsurface transport of solvent, a computer model would be implemented. Chemists would then characterize the molecular bonding of the solvent to the specific soil type, and biologists would study the impacts upon soil arthropods, plants, and ultimately pond-dwelling organisms that are the food of the endangered amphibian. Geosciences include environmental geology, environmental soil science, volcanic phenomena and evolution of the Earth's crust. In some classification systems this can also include hydrology, including oceanography. As an example study of soils erosion, calculations would be made of surface runoff by soil scientists. Fluvial geomorphologists would assist in examining sediment transport in overland flow. Physicists would contribute by assessing the changes in light transmission in the receiving waters. Biologists would analyze subsequent impacts to aquatic flora and fauna from increases in water turbidity.